21

- 2. The method according to claim 1 wherein the non-liquid hydrophilic core is a matrix of naturally or chemically cross-linked polysaccharides or oligosaccharides.
- 3. The method according to claim 1 or claim 2 wherein the vectors are between 10 nm and 5 μ m.
- **4.** The method according to claim **1** or claim **2** wherein the size of the vector is between 25 nm and 200 nm.
- 5. The method according to claim 1 or claim 2 wherein the size of the vector is approximately 80 nm.
- 6. The method according to claim 1 or claim 2 wherein the 10 antigen is an influenza antigen.
- 7. The method according to claim 6 wherein the influenza antigen comprises hemagglutinin.
- 8. The method according to claim 6 wherein the influenza antigen comprises a combination of hemagglutinin and 15 neuraminidase.
- 9. The method according to claim 1 or claim 2 wherein cationic ligands are covalently bound to the non-liquid hydrophilic core.
- 10. The method according to claim 9 wherein the cationic 20 ligands are quaternary ammonium groups, secondary amines or primary amines.
- 11. The method according to claim 1 or claim 2 wherein anionic ligands are covalently bound to the non-liquid hydrophilic core.
- 12. The method according to claim 11 wherein the anionic ligands are phosphates, sulphates, or carboxylates.
- 13. A method for increasing the immunogenicity of an antigen in an individual, the method comprising administering to the individual a composition consisting essentially of the antigen combined with a particulate vector, the particulate vector consisting essentially of a non-liquid hydrophilic core and a single outer layer.
- 14. The method according to claim 13 wherein the non-liquid hydrophilic core is a matrix of naturally or chemically 35 cross-linked polysaccharides or oligosaccharides.

22

- 15. The method according to claim 13 or claim 14 wherein the single outer layer comprises a lipid.
- 16. The method according to claim 15 wherein the lipid comprises a fatty acid.
- 17. The method according to claim 16 wherein the fatty acid is a natural fatty acid bound to the non-liquid hydrophilic core by means of covalent bonds.
- 18. The method according to claim 15 wherein the lipid comprises a phospholipid.
- 19. The method according to claim 18 wherein the phospholipid comprises different types of phospholipids.
- **20**. The method according to claim **13** or claim **14** wherein the vectors are between 10 nm and 5 μ m.
- 21. The method according to claim 13 or claim 14 wherein the size of the vector is between 25 nm and 200 nm.
- 22. The method according to claim 13 or claim 14 wherein the size of the vector is approximately 80 nm.
- 23. The method according to claim 13 or claim 14 wherein the antigen is an influenza antigen.
- 24. The method according to claim 23 wherein the influenza antigen comprises hemagglutinin.
- 25. The method according to claim 23 wherein the influenza antigen comprises a combination of hemagglutinin and neuraminidase.
- 26. The method according to claim 13 or claim 14 wherein cationic ligands are covalently bound to the non-liquid hydrophilic core.
- 27. The method according to claim 26 wherein the cationic ligands are quaternary ammonium groups, secondary amines or primary amines.
- 28. The method according to claim 13 or claim 14 wherein anionic ligands are covalently bound to the non-liquid hydrophilic core.
- 29. The method according to claim 28 wherein the anionic ligands are phosphates, sulphates, or carboxylates.

* * * * *